Jump to content

Hadoop Regular Class Start On Oct 11Th 6 Am (Ist)


Recommended Posts

Posted

[color=#282828][size=4]
[font=helvetica, arial, sans-serif][size=6]Email: [b][color=#FF0000][email protected][/color][/b]

Contact No: [b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b][/size][/font]

[b][color=#800080][size=6]Hadoop(Development + Admin+ Analytics) Regular class start on oct 11th 6 AM (IST) [/size][/color][color=#800080][size=6]by certified trainer.[/size][/color][/b]

[b]HADOOP BASICS[/b]

[font=helvetica, arial, sans-serif] The Motivation for Hadoop [/font]
[font=helvetica, arial, sans-serif] Problems with traditional large-scale systems[/font]
[font=helvetica, arial, sans-serif] Data Storage literature survey  Data Processing literature Survey[/font]
[font=helvetica, arial, sans-serif] Network Constraints  Requirements for a new approach [/font]
[font=helvetica, arial, sans-serif] Hadoop: Basic Concepts [/font]
[font=helvetica, arial, sans-serif] What is Hadoop? [/font]
[font=helvetica, arial, sans-serif] The Hadoop Distributed File System[/font]
[font=helvetica, arial, sans-serif] Hadoop Map Reduce Works [/font]
[font=helvetica, arial, sans-serif] Anatomy of a Hadoop Cluster[/font]
[font=helvetica, arial, sans-serif] Hadoop demons [/font]
[font=helvetica, arial, sans-serif]  Master Daemons[/font]
[font=helvetica, arial, sans-serif] Name node[/font]
[font=helvetica, arial, sans-serif] Job Tracker[/font]
[font=helvetica, arial, sans-serif] Secondary name node[/font]
[font=helvetica, arial, sans-serif] Slave Daemons[/font]
[font=helvetica, arial, sans-serif] Job tracker [/font]
[font=helvetica, arial, sans-serif] Task tracker[/font]
[font=helvetica, arial, sans-serif] HDFS(Hadoop Distributed File System) [/font]
[font=helvetica, arial, sans-serif]  Blocks and Splits[/font]
[font=helvetica, arial, sans-serif] Input Splits[/font]
[font=helvetica, arial, sans-serif] HDFS Splits[/font]
[font=helvetica, arial, sans-serif] Data Replication[/font]
[font=helvetica, arial, sans-serif] Hadoop Rack Aware[/font]
[font=helvetica, arial, sans-serif] Data high availability [/font]
[font=helvetica, arial, sans-serif] Cluster architecture and block placement [/font]

[font=helvetica, arial, sans-serif] CASE STUDIES Programming Practices & Performance Tuning [/font]
[font=helvetica, arial, sans-serif] Developing MapReduce Programs in[/font]
[font=helvetica, arial, sans-serif] Local Mode Running without HDFS[/font]
[font=helvetica, arial, sans-serif] Pseudo-distributed Mode Running all daemons in a single node[/font]
[font=helvetica, arial, sans-serif] Fully distributed mode Running daemons on dedicated nodes [/font]
[font=helvetica, arial, sans-serif]Hadoop Administration [/font]
[font=helvetica, arial, sans-serif] Setup Hadoop cluster of Apache, Cloudera, Hortonworks, Greenplum [/font]
[font=helvetica, arial, sans-serif] Make a fully distributed Hadoop cluster on a single laptop/desktop[/font]
[font=helvetica, arial, sans-serif] Install and configure Apache Hadoop on a multi node cluster in lab.[/font]
[font=helvetica, arial, sans-serif] Install and configure Cloudera Hadoop distribution in fully distributed mode[/font]
[font=helvetica, arial, sans-serif] Install and configure Horton Works Hadoop distribution in fully distributed mode[/font]
[font=helvetica, arial, sans-serif] Install and configure Green Plum distribution in fully distributed mode[/font]
[font=helvetica, arial, sans-serif] Monitoring the cluster [/font]
[font=helvetica, arial, sans-serif] Getting used to management console of Cloudera and Horton Works[/font]
[font=helvetica, arial, sans-serif] Name Node in Safe mode[/font]
[font=helvetica, arial, sans-serif] Meta Data Backup[/font]
[font=helvetica, arial, sans-serif] Ganglia and Nagios – Cluster monitoring[/font]
[font=helvetica, arial, sans-serif] CASE STUDIES [/font]

[font=helvetica, arial, sans-serif]Hadoop Development [/font]
[font=helvetica, arial, sans-serif] Writing a MapReduce Program[/font]
[font=helvetica, arial, sans-serif] Examining a Sample MapReduce Program[/font]
[font=helvetica, arial, sans-serif] With several examples[/font]
[font=helvetica, arial, sans-serif] Basic API Concepts [/font]
[font=helvetica, arial, sans-serif] The Driver Code [/font]
[font=helvetica, arial, sans-serif] The Mapper [/font]
[font=helvetica, arial, sans-serif] The Reducer [/font]
[font=helvetica, arial, sans-serif] Hadoop's Streaming API[/font]
[font=helvetica, arial, sans-serif] Performing several Hadoop jobs [/font]

[font=helvetica, arial, sans-serif] The configure and close Methods [/font]
[font=helvetica, arial, sans-serif] Sequence Files[/font]
[font=helvetica, arial, sans-serif] Record Reader[/font]
[font=helvetica, arial, sans-serif] Record Writer[/font]
[font=helvetica, arial, sans-serif] Role of Reporter[/font]
[font=helvetica, arial, sans-serif] Output Collector  Counters[/font]
[font=helvetica, arial, sans-serif] Directly Accessing HDFS[/font]
[font=helvetica, arial, sans-serif] ToolRunner[/font]
[font=helvetica, arial, sans-serif] Using The Distributed Cache[/font]
[font=helvetica, arial, sans-serif] Several MapReduce jobs (In Detailed) [/font]
[font=helvetica, arial, sans-serif] MOST EFFECTIVE SEARCH USING MAPREDUCE[/font]
[font=helvetica, arial, sans-serif] GENERATING THE RECOMMENDATIONS USING MAPREDUCE[/font]
[font=helvetica, arial, sans-serif] PROCESSING THE LOG FILES USING MAPREDUCE[/font]
[font=helvetica, arial, sans-serif] Identity Mapper [/font]
[font=helvetica, arial, sans-serif] Identity Reducer[/font]
[font=helvetica, arial, sans-serif] Exploring well known problems using MapReduce applications[/font]
[font=helvetica, arial, sans-serif] Debugging MapReduce Programs [/font]
[font=helvetica, arial, sans-serif] Testing with MRUnit[/font]
[font=helvetica, arial, sans-serif] Logging [/font]
[font=helvetica, arial, sans-serif] Other Debugging Strategies[/font]
[font=helvetica, arial, sans-serif].  Advanced MapReduce Programming [/font]
[font=helvetica, arial, sans-serif] The Secondary Sort  Customized Input Formats and Output Formats[/font]
[font=helvetica, arial, sans-serif] Joins in MapReduce  Monitoring and debugging on a Production Cluster [/font]
[font=helvetica, arial, sans-serif] Counters  Skipping Bad Records  Running in local mode[/font]
[font=helvetica, arial, sans-serif] Tuning for Performance in MapReduce [/font]
[font=helvetica, arial, sans-serif] Reducing network traffic with combiner  Partitioners  Reducing the amount of input data [/font]
[font=helvetica, arial, sans-serif] Using Compression  Reusing the JVM  Running with speculative execution [/font]

[font=helvetica, arial, sans-serif] Other Performance Aspects  CASE STUDIES  CDH4 Enhancements [/font]
[font=helvetica, arial, sans-serif] Name Node High – Availability[/font]
[font=helvetica, arial, sans-serif] Name Node federation[/font]
[font=helvetica, arial, sans-serif] Fencing  MapReduce Version - 2 [/font]
[font=helvetica, arial, sans-serif]HADOOP ANALYST [/font]
[font=helvetica, arial, sans-serif] Hive [/font]
[font=helvetica, arial, sans-serif] Hive concepts  Hive architecture[/font]
[font=helvetica, arial, sans-serif] Install and configure hive on cluster[/font]
[font=helvetica, arial, sans-serif] Different type of tables in hive  Hive library functions[/font]
[font=helvetica, arial, sans-serif] Buckets[/font]
[font=helvetica, arial, sans-serif] Partitions[/font]
[font=helvetica, arial, sans-serif] Joins in hive[/font]
[font=helvetica, arial, sans-serif] Inner joins  Outer Joins[/font]
[font=helvetica, arial, sans-serif] Hive UDF  PIG [/font]
[font=helvetica, arial, sans-serif]  Pig basics  Install and configure PIG on a cluster  PIG Library functions[/font]
[font=helvetica, arial, sans-serif] Pig Vs Hive  Write sample Pig Latin scripts  Modes of running PIG[/font]
[font=helvetica, arial, sans-serif] Running in Grunt shell  Running as Java program  PIG UDFs  Pig Macros[/font]
[font=helvetica, arial, sans-serif] Debugging PIG  IMPALA[/font]
[font=helvetica, arial, sans-serif] Difference between Impala Hive and Pig[/font]
[font=helvetica, arial, sans-serif] How Impala gives good performance[/font]
[font=helvetica, arial, sans-serif] Exclusive features of Impala[/font]

[font=helvetica, arial, sans-serif] Impala Challenges  Use cases of Impala [/font]
[font=helvetica, arial, sans-serif]NOSQL [/font]
[font=helvetica, arial, sans-serif] HBase [/font]
[font=helvetica, arial, sans-serif]  HBase concepts  HBase architecture  Region server architecture[/font]
[font=helvetica, arial, sans-serif] File storage architecture  HBase basics  Column access  Scans[/font]
[font=helvetica, arial, sans-serif] HBase use cases  Install and configure HBase on a multi node cluster [/font]
[font=helvetica, arial, sans-serif] Create database, Develop and run sample applications[/font]
[font=helvetica, arial, sans-serif] Access data stored in HBase using clients like Java, Python and Pearl[/font]
[font=helvetica, arial, sans-serif] Map Reduce client to access the HBase data[/font]
[font=helvetica, arial, sans-serif] HBase and Hive Integration[/font]
[font=helvetica, arial, sans-serif] HBase admin tasks  Defining Schema and basic operation.[/font]
[font=helvetica, arial, sans-serif] Cassandra Basics[/font]
[font=helvetica, arial, sans-serif] MongoDB Basics [/font]
[font=helvetica, arial, sans-serif]Other EcoSystem Components [/font]
[font=helvetica, arial, sans-serif] Sqoop [/font]
[font=helvetica, arial, sans-serif] Install and configure Sqoop on cluster[/font]
[font=helvetica, arial, sans-serif] Connecting to RDBMS  Installing Mysql[/font]
[font=helvetica, arial, sans-serif] Import data from Oracle/Mysql to hive[/font]
[font=helvetica, arial, sans-serif] Export data to Oracle/Mysql[/font]
[font=helvetica, arial, sans-serif] Internal mechanism of import/export [/font]

[font=helvetica, arial, sans-serif] Oozie [/font]
[font=helvetica, arial, sans-serif] Oozie architecture  XML file specifications[/font]
[font=helvetica, arial, sans-serif] Install and configuring Oozie and Apache[/font]
[font=helvetica, arial, sans-serif] Specifying Work flow  Action nodes  Control nodes[/font]
[font=helvetica, arial, sans-serif] Oozie job coordinator [/font]
[font=helvetica, arial, sans-serif] Flume, Chukwa, Avro, Scribe, Thrift [/font]
[font=helvetica, arial, sans-serif] Flume and Chukwa concepts [/font]
[font=helvetica, arial, sans-serif] Use cases of Thrift, Avro and scribe[/font]
[font=helvetica, arial, sans-serif] Install and configure flume on cluster [/font]
[font=helvetica, arial, sans-serif] Create a sample application to capture logs from Apache using flume  Hadoop Challenges [/font]
[font=helvetica, arial, sans-serif] Hadoop disaster recovery[/font]
[font=helvetica, arial, sans-serif] Hadoop suitable cases [/font]

[b]HIGHLIGHTS
 100% CERTIFICATION ASSURANCE
 BIG DATA UNIVERSITY(IBM) CERTIFICATION FREE
 TECHNICAL SUPPORT
 INTERVIEW QUESTIONS
 SAMPLE RESUMES[/b][font=helvetica, arial, sans-serif] [/font][/size][/color][list]
[*][url="http://www.andhrafriends.com/index.php?app=core&module=global&section=reputation&do=add_rating&app_rate=forums&type=pid&type_id=1304368321&rating=1&secure_key=a2780818694b048fddb1503fcdd6594d&post_return=1304368321"]Like This[/url]
[/list][list]
[*][url="http://www.andhrafriends.com/index.php?app=forums&module=post&section=post&do=reply_post&f=15&t=449740&qpid=1304368321"]Quote[/url]
[*][url="http://www.andhrafriends.com/index.php?app=forums&module=post&section=post&do=reply_post&f=15&t=449740&qpid=1304368321"]MultiQuote[/url]
[*][url="http://www.andhrafriends.com/index.php?app=forums&module=post&section=post&do=edit_post&f=15&t=449740&p=1304368321&st="]Edit[/url]
[/list]

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...