ManOffSteel Posted April 15 Author Report Posted April 15 3 minutes ago, baabaa said: ee city anna? Dallaspuram Quote
ManOffSteel Posted April 15 Author Report Posted April 15 3 minutes ago, kevinUsa said: fake news by H1 people to scare others canada lo recruiters asking are u willing to move to usa if job is given ani. what are u saying.. they are also paying good salaries too upto 150-200k per year Ante ante Quote
citizenofIND Posted April 15 Report Posted April 15 Seems like, Every client doing, just saw a ticket. Tellodu working since 15 years laid off. Since ticket is there, aware else no idea what’s happening in own client. Quote
pakeer_saab Posted April 15 Report Posted April 15 36 minutes ago, Coconut said: Fake News anna...lot of high paying jobs available... aade cheppedi "manam IT work cheste paisal iche job not HAND JOB" Quote
pakeer_saab Posted April 15 Report Posted April 15 30 minutes ago, tollywood_hater said: emo anna , ee sari raasi palalu antha baga levu .... kompa teesi vallu mana raasi vallu emo ani doubt raasi phalalu eppudu alaage untaayi.. choose vaadi batti untadi Quote
Popular Post pakeer_saab Posted April 15 Popular Post Report Posted April 15 9 minutes ago, kevinUsa said: fake news by H1 people to scare others canada lo recruiters asking are u willing to move to usa if job is given ani. what are u saying.. they are also paying good salaries too upto 150-200k per year induku kaadu Canada povaddu ra anindi brain freeze ayipoddi neeku ainattu 1 2 Quote
Iriswest Posted April 15 Report Posted April 15 24 minutes ago, kevinUsa said: fake news by H1 people to scare others canada lo recruiters asking are u willing to move to usa if job is given ani. what are u saying.. they are also paying good salaries too upto 150-200k per year Ekkada ento kuda cheppu. Quote
desimanager Posted April 15 Report Posted April 15 Contractors safee temporarily.. ftes hard time layoff iyte Quote
Tellugodu Posted April 15 Report Posted April 15 2 minutes ago, desimanager said: Contractors safee temporarily.. ftes hard time layoff iyte Why do you think? Quote
desimanager Posted April 15 Report Posted April 15 1 minute ago, Tellugodu said: Why do you think? In case of layoff contractors will have breathing time .. FTe 60 day period lo job kotali ga 1 Quote
kevinUsa Posted April 15 Report Posted April 15 21 minutes ago, Iriswest said: Ekkada ento kuda cheppu. yes ERP meda nannu linkedin lo asked Quote
allbakara Posted April 15 Report Posted April 15 56 minutes ago, kevinUsa said: fake news by H1 people to scare others canada lo recruiters asking are u willing to move to usa if job is given ani. what are u saying.. they are also paying good salaries too upto 150-200k per year Adhi trap bro…border security check daggara moosi 10gadaniki plan 1 Quote
VanceChilukuri Posted April 15 Report Posted April 15 github copilot lo Claude 3.7 Sonnet model select cheskoni code write chesthe layoffs kaka inka emavthadi ? evadaina use chesada claude 3.7 ee DB lo? padi mandi chesey pani okkadey cheyyocchu if you use it. 2 Quote
kevinUsa Posted April 15 Report Posted April 15 18 minutes ago, VanceChilukuri said: github copilot lo Claude 3.7 Sonnet model select cheskoni code write chesthe layoffs kaka inka emavthadi ? evadaina use chesada claude 3.7 ee DB lo? padi mandi chesey pani okkadey cheyyocchu if you use it. please write a python code to create awebsite like perplexity code by claude 3.7 sonet I'll help you write Python code to create a website similar to Perplexity, which is a search engine that uses AI to provide comprehensive answers. Here's a basic implementation using Flask and some AI components: Claude Sonnet 3.7 I'll help you write Python code to create a website similar to Perplexity, which is a search engine that uses AI to provide comprehensive answers. Here's a basic implementation using Flask and some AI components: Code python Copy Code # Create a simple Perplexity-like web app using Flask import os from flask import Flask, render_template, request, jsonify # Create a basic Flask app structure app_structure = """ perplexity_clone/ ├── app.py ├── static/ │ ├── css/ │ │ └── style.css │ └── js/ │ └── main.js └── templates/ ├── index.html └── results.html """ print("Creating app structure...") # Create directories os.makedirs("perplexity_clone/static/css", exist_ok=True) os.makedirs("perplexity_clone/static/js", exist_ok=True) os.makedirs("perplexity_clone/templates", exist_ok=True) # Create app.py app_py = """ from flask import Flask, render_template, request, jsonify import time import random app = Flask(__name__) # This would be replaced with actual AI/search functionality def generate_ai_response(query): # Simulate AI processing time time.sleep(1) # In a real app, this would call an LLM API or search service sources = [ {"title": "Source 1", "url": "https://example.com/1", "snippet": "Relevant information from source 1..."}, {"title": "Source 2", "url": "https://example.com/2", "snippet": "Relevant information from source 2..."}, {"title": "Source 3", "url": "https://example.com/3", "snippet": "Relevant information from source 3..."} ] return { "answer": f"Here is an AI-generated answer about '{query}'. This would be a comprehensive response synthesized from multiple sources.", "sources": sources } @app.route('/') def index(): return render_template('index.html') @app.route('/search') def search(): query = request.args.get('q', '') if not query: return render_template('index.html') return render_template('results.html', query=query) @app.route('/api/answer') def get_answer(): query = request.args.get('q', '') if not query: return jsonify({"error": "Query is required"}), 400 # Get AI-generated response response = generate_ai_response(query) return jsonify(response) if __name__ == '__main__': app.run(debug=True) """ with open("perplexity_clone/app.py", "w") as f: f.write(app_py) # Create index.html index_html = """ <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>AI Search Engine</title> <link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}"> </head> <body> <div class="container"> <div class="search-container"> <h1>AI Search Engine</h1> <p class="tagline">Get AI-powered answers to your questions</p> <form action="/search" method="get" class="search-form"> <input type="text" name="q" placeholder="Ask anything..." required> <button type="submit">Search</button> </form> </div> <div class="features"> <div class="feature"> <h3>AI-Powered Answers</h3> <p>Get comprehensive answers generated by AI</p> </div> <div class="feature"> <h3>Source Citations</h3> <p>See where information comes from</p> </div> <div class="feature"> <h3>Real-time Results</h3> <p>Get the most up-to-date information</p> </div> </div> </div> </body> </html> """ with open("perplexity_clone/templates/index.html", "w") as f: f.write(index_html) # Create results.html results_html = """ <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Results - AI Search Engine</title> <link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}"> </head> <body> <div class="results-container"> <header> <div class="logo"> <a href="/">AI Search Engine</a> </div> <form action="/search" method="get" class="search-form-small"> <input type="text" name="q" value="{{ query }}" required> <button type="submit">Search</button> </form> </header> <main> <div class="query-info"> <h2>{{ query }}</h2> </div> <div class="answer-container"> <div id="loading">Generating AI response...</div> <div id="answer" style="display: none;"></div> <div id="sources-container" style="display: none;"> <h3>Sources</h3> <div id="sources-list"></div> </div> </div> </main> </div> <script src="{{ url_for('static', filename='js/main.js') }}"></script> <script> document.addEventListener('DOMContentLoaded', function() { fetchAnswer('{{ query }}'); }); </script> </body> </html> """ with open("perplexity_clone/templates/results.html", "w") as f: f.write(results_html) # Create style.css style_css = """ * { margin: 0; padding: 0; box-sizing: border-box; font-family: 'Arial', sans-serif; } body { background-color: #f9f9f9; color: #333; } .container { max-width: 800px; margin: 0 auto; padding: 100px 20px; text-align: center; } .search-container h1 { font-size: 2.5rem; margin-bottom: 10px; color: #4285f4; } .tagline { font-size: 1.2rem; color: #666; margin-bottom: 30px; } .search-form input { width: 70%; padding: 15px; font-size: 1rem; border: 1px solid #ddd; border-radius: 24px 0 0 24px; outline: none; } .search-form button { padding: 15px 25px; font-size: 1rem; background-color: #4285f4; color: white; border: none; border-radius: 0 24px 24px 0; cursor: pointer; } .features { display: flex; justify-content: space-between; margin-top: 80px; } .feature { flex: 1; padding: 20px; background-color: white; border-radius: 8px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); margin: 0 10px; } .feature h3 { color: #4285f4; margin-bottom: 10px; } /* Results page styles */ .results-container { max-width: 1000px; margin: 0 auto; padding: 20px; } header { display: flex; justify-content: space-between; align-items: center; padding-bottom: 20px; border-bottom: 1px solid #eee; } .logo a { font-size: 1.5rem; font-weight: bold; color: #4285f4; text-decoration: none; } .search-form-small { display: flex; width: 60%; } .search-form-small input { width: 100%; padding: 10px; font-size: 1rem; border: 1px solid #ddd; border-radius: 4px 0 0 4px; outline: none; } .search-form-small button { padding: 10px 15px; font-size: 1rem; background-color: #4285f4; color: white; border: none; border-radius: 0 4px 4px 0; cursor: pointer; } .query-info { margin: 20px 0; } .answer-container { background-color: white; padding: 30px; border-radius: 8px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); } #loading { text-align: center; padding: 20px; color: #666; } #answer { line-height: 1.6; margin-bottom: 30px; } #sources-container { border-top: 1px solid #eee; padding-top: 20px; } #sources-container h3 { margin-bottom: 15px; color: #4285f4; } .source-item { margin-bottom: 15px; padding-bottom: 15px; border-bottom: 1px solid #eee; } .source-item:last-child { border-bottom: none; } .source-title { font-weight: bold; margin-bottom: 5px; } .source-title a { color: #1a0dab; text-decoration: none; } .source-title a:hover { text-decoration: underline; } .source-snippet { color: #666; font-size: 0.9rem; } """ with open("perplexity_clone/static/css/style.css", "w") as f: f.write(style_css) # Create main.js main_js = """ async function fetchAnswer(query) { try { const response = await fetch(`/api/answer?q=${encodeURIComponent(query)}`); const data = await response.json(); if (response.ok) { displayAnswer(data.answer); displaySources(data.sources); } else { displayError(data.error || 'Failed to generate answer'); } } catch (error) { displayError('An error occurred while fetching the answer'); console.error(error); } } function displayAnswer(answer) { document.getElementById('loading').style.display = 'none'; const answerElement = document.getElementById('answer'); answerElement.innerHTML = `<p>${answer}</p>`; answerElement.style.display = 'block'; } function displaySources(sources) { const sourcesContainer = document.getElementById('sources-container'); const sourcesList = document.getElementById('sources-list'); sourcesList.innerHTML = ''; sources.forEach(source => { const sourceItem = document.createElement('div'); sourceItem.className = 'source-item'; sourceItem.innerHTML = ` <div class="source-title"> <a href="${source.url}" target="_blank">${source.title}</a> </div> <div class="source-snippet">${source.snippet}</div> `; sourcesList.appendChild(sourceItem); }); sourcesContainer.style.display = 'block'; } function displayError(message) { document.getElementById('loading').style.display = 'none'; const answerElement = document.getElementById('answer'); answerElement.innerHTML = `<p class="error">${message}</p>`; answerElement.style.display = 'block'; } """ with open("perplexity_clone/static/js/main.js", "w") as f: f.write(main_js) # Create a README file with instructions readme = """ # Perplexity-like AI Search Engine This is a basic implementation of a Perplexity-like AI search engine using Flask. ## Features - Search interface similar to Perplexity - AI-generated answers (simulated in this demo) - Source citations - Responsive design ## How to Run 1. Install the required packages: pip install flask 2. Navigate to the project directory: cd perplexity_clone 3. Run the Flask application: python app.py 4. Open your browser and go to: http://127.0.0.1:5000/ ## Next Steps for a Production-Ready Application 1. Integrate with a real LLM API (like OpenAI, Claude, etc.) 2. Add a real search API (Google, Bing, etc.) 3. Implement user authentication 4. Add conversation history 5. Implement streaming responses 6. Add database for storing queries and results 7. Deploy to a production server with proper scaling ## Note This is a simplified demo. A production-ready Perplexity clone would require more sophisticated components, including: - Advanced NLP models - Web crawling and indexing - Real-time data fetching - Citation verification - User accounts and personalization """ with open("perplexity_clone/README.md", "w") as f: f.write(readme) print("Files created successfully in the 'perplexity_clone' directory.") print("\nTo run the application:") print("1. cd perplexity_clone") print("2. pip install flask") print("3. python app.py") print("4. Open http://127.0.0.1:5000/ in your browser") Output output Copy Code Creating app structure... Files created successfully in the 'perplexity_clone' directory. To run the application: 1. cd perplexity_clone 2. pip install flask 3. python app.py 4. Open http://127.0.0.1:5000/ in your browser I've created a basic Perplexity-like search engine using Flask. The application includes: A clean search interface with a prominent search bar Results page that displays AI-generated answers Source citations section Responsive design for different screen sizes To run the application: Navigate to the perplexity_clone directory Install Flask: pip install flask Start the server: python app.py Open http://127.0.0.1:5000/ in your browser This is a simplified version that simulates AI responses. For a production-ready application, you would need to integrate with actual LLM APIs (like OpenAI or Claude), implement real search functionality, add user authentication, and deploy to a proper server. Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.